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Abstract  

 

Fluctuations in the heart’s activity can modulate the access of external stimuli to consciousness. 

The link between perceptual awareness and cardiac signals has been investigated mainly in the 

visual and auditory domain. We here investigated whether the phase of the cardiac cycle and the 

pre-stimulus heart rate influence conscious somatosensory perception. We also tested how 

conscious detection of somatosensory stimuli affects the heart rate. Electrocardiograms (ECG) of 

33 healthy volunteers were recorded while applying near-threshold electrical pulses at a fixed 

intensity to the left index finger. Conscious detection was not uniformly distributed across the 

cardiac cycle but significantly higher in diastole than in systole. We found no evidence that the 

heart rate before a stimulus influenced its detection but hits (correctly detected somatosensory 

stimuli) led to a more pronounced cardiac deceleration than misses. Our findings demonstrate 

interactions between cardiac activity and conscious somatosensory perception, which highlights 

the importance of internal bodily states for sensory processing beyond the auditory and visual 

domain.  

 

Keywords: perceptual awareness, cardiac cycle, heart rate, somatosensory perception, 

interoception  
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1. INTRODUCTION 

 

The internal state of the body is continuously monitored by interoceptive regions and networks 

in the brain (Craig, 2009; Barrett & Simmons, 2015; Kleckner et al., 2017). Besides their well-

described role in homeostatic regulation, visceral signals have been argued to contribute to a 

wide range of psychological phenomena, including emotions (Critchley & Garfinkel, 2017; Wiens, 

2005), empathy (Grynberg & Pollatos, 2015; Fukushima, Terasawa, & Umeda, 2011), time 

perception (Di Lernia et al., 2018; Meissner & Wittmann, 2011), self-consciousness (Craig, 2009; 

Park & Tallon-Baudry, 2014), and decision-making (Gu & Fitzgerald, 2014; Seth, 2014). At the 

perceptual level, it remains unclear to what extent signals from visceral organs can modulate the 

conscious access to exteroceptive (e.g., visual, auditory, somatosensory) input. Here, we 

examined the interactions between perceptual awareness for somatosensory stimuli and cardiac 

activity – that is, the phase of the cardiac cycle and the heart rate.  

 The cardiac cycle from one heartbeat to the next can be divided into two phases: systole, 

when the heart contracts and ejects blood into the arteries – leading to activation of pressure-

sensitive baroreceptors in arterial vessel walls – and diastole, when the cardiac muscle relaxes, 

the heart refills with blood, and baroreceptors remain quiescent (Landgren, 1952; Mancia & 

Mark, 2011). Baroreceptor activity signals the strength and timing of each heartbeat to the 

nuclei in the lower brain stem, where the signal is relayed to subcortical and cortical brain 

regions (Dampney, 2016). In studies with non-invasive baroreceptor stimulation, their activity 

was found to decrease the BOLD signal (Makovac et al., 2015) and ERP amplitudes (Rau, Pauli, 

Brody, Elbert, & Birbaumer, 1993; Rau & Elbert, 2001) in cortical regions. Baroreceptor firing is 

thought to underlie cardiac cycle effects on behavior and cognition (Duschek, Werner, & Reyes 

Del Paso, 2013; Garfinkel & Critchley, 2016), like decreased intensity ratings for acoustic (Cohen, 

Lieb, & Riest, 1980; Schulz et al., 2009) or painful stimulation (Wilkinson et al., 2013) as well as 

higher reaction times to stimuli (Birren, Cardon, & Philips, 1963; Edwards, Ring, McIntyre, 

Carroll, & Martin, 2007; McIntyre, Ring, Edwards, & Carroll, 2008) during early (i.e., at systole) 

compared to later phases (i.e., at diastole) of the cardiac cycle. 

 There are conflicting findings to what extent the cardiac cycle modulates the access of 

exteroceptive information to perceptual awareness. Earlier studies reported that the detection 

of visual (Réquin & Brouchon, 1964, Sandman, McCanne, Kaiser, & Diamond, 1977) and auditory 

signals (Saxon, 1970) vary for different points of the cardiac cycle. However, other studies in the 

visual (Elliot & Graf, 1972) and auditory domain (Delfini & Campos, 1972; Velden & Juris, 1975) 

did not find such variations. More recently, an enhanced detection selectively for fearful faces 

was observed during cardiac systole (Garfinkel et al., 2014). As almost all studies in that field 

involved visual or auditory stimuli, it remains unclear whether cardiac-phase related 
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fluctuations occur in other sensory modalities. The only previous study in the somatosensory 

domain with a behavioral measure of perception reported lower detection thresholds for 

electrical stimulation at systole compared to diastole (Edwards, Ring, McIntyre, Winer, & Martin, 

2009). As in most studies of cardiac-phase effects, the detection performance was sampled only 

at fixed time points (R+0, R+300, and R+600 ms), which may have missed perceptual changes at 

other parts of the cardiac cycle.  

 In the present study, we examined fluctuations in conscious somatosensory perception 

across the entire cardiac cycle. Given the variations in cortical excitability over the cardiac cycle, 

we hypothesized that detection of near-threshold electrical stimuli is not equally distributed but 

varies over the interval between one heartbeat and the next. We also aimed to explore 

associations between conscious somatosensory perception and the heart rate. The bidirectional 

information flow between the heart and the brain (Faes et al., 2017, Lin, Liu, Bartsch, & Ivanov, 

2016, Valenza, Toschi, & Barbieri, 2016) implies that cardiac activity may not only impact 

perception but is also influenced by it. Therefore, we tested whether the pre-stimulus heart rate 

influences conscious perception and, in turn, whether perception changes the (post-stimulus) 

heart rate. 

 Regarding the relation between the heart rate and perception, an early theory suggested 

that a decreased heart rate increases sensitivity to sensory stimulation by directing attention to 

external rather than internal signals (Graham & Clifton, 1965; Lacey, Kagan, Lacey, & Moss, 

1963; Lacey, 1967; Sandman, 1986). The evidence for this hypothesis is mixed and comes only 

from studies in the auditory and visual domain: For auditory thresholds, there were no 

differences between transient periods of low and high heart rate (Edwards & Alsip, 1969) unless 

the procedure involved exercise-induced changes in heart rate (Saxon & Dahle, 1971). In 

addition to such heart rate variations over longer periods of time, quick changes from one 

heartbeat to the next were suggested to modulate perception (Lacey & Lacey, 1974; Sandman et 

al., 1977). In general, cardiac deceleration (i.e., a lengthening of the period between consecutive 

heartbeats) is known to occur in anticipation of a (cued) stimulus or in reaction to a salient 

stimulus (Lacey & Lacey, 1970, 1977; Simons, 1988), and it is typically followed by cardiac 

acceleration after the behavioral response (e.g., Börger & Meere, 2000; Park, Correia, Ducorps, & 

Tallon-Baudry, 2014). While both spontaneous (Sandman et al., 1977) and conditioned 

(McCanne & Sandman, 1974) cardiac deceleration coincident with a visual stimulus was found to 

increase its detection, other – more recent – studies did not show a modulation of visual 

awareness by heart rate changes prior to and coincident with a near-threshold stimulus (Cobos, 

Guerra, Vila, & Chica, 2018; Park et al., 2014). 

 For heart rate changes after stimulus presentation, earlier studies found a cardiac 

deceleration in response to suprathreshold visual (Davis & Buchwald, 1957), auditory (Davis, 
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Buchwald, & Frankmann, 1955; Uno & Grings, 1965; Wilson, 1964), tactile (Davis et al., 1955), 

and olfactory stimuli (Gray & Crowell, 1968). Additionally, cardiac deceleration was found to be 

more pronounced after viewing unpleasant compared to pleasant or neutral scenes (Bradley, 

Cuthbert, & Lang, 1990; Greenwald, Cook, & Lang; 1989; Hare, 1973; Libby, Lacey, & Lacey, 

1973; Walker & Sandman, 1977). Most importantly in the context of this work, recent studies 

using near-threshold visual stimuli showed that hits resulted in increased cardiac deceleration 

compared to misses (Cobos et al., 2018; Park et al., 2014). This suggests that not only the 

physical characteristics of a stimulus determine the cardiac response but also the level of its 

processing (i.e., conscious vs. nonconscious). 

 The association between cardiac activity and perception was also related to cardiac-

phase independent variations in arterial pressure after changes in heart rate (Sandman et al., 

1977). In this view, the late phase of the cardiac cycle (i.e., diastole) and cardiac deceleration 

result in – similar but not identical – transient decreases in blood pressure; thus facilitating the 

access of external stimuli to consciousness by decreasing the inhibitory effects of baroreceptor 

activity on the brain (Sandman, 1986; Sandman et al., 1977). Notably, even though higher mean 

arterial blood pressure has been associated with higher resting heart rate (Christofaro, 

Casonatto, Vanderlei, Cucato, & Dias, 2017; Mancia et al., 1983), increases in blood pressure after 

cardiac deceleration (i.e., decreases in heart rate) were observed during experimental tasks 

(Otten, Gaillard, & Wientjes, 1995; Wölk, Velden, Zimmermann, & Krug. 1989). In addition, 

animal studies showed that – also with constant mean arterial pressure – the heart rate 

elevation leads to an increased discharge of arterial baroreceptors (Abboud & Chapleau, 1988; 

Barrett & Bolter, 2006). Taken together, these findings suggest that the heart rate contributes to 

cortical excitability through a transient modulation of baroreceptor activity. 

 Furthermore, we aimed to test whether the influence of cardiac signals on perception 

varies with inter-individual differences in interoceptive accuracy, that is, the ability to 

consciously perceive signals originating from the body (Garfinkel, Seth, Barrett, Suzuki, & 

Critchley, 2015). Given that the capacity to detect one’s own heartbeat has been repeatedly 

shown to modulate (usually strengthen) cardiac effects on perception and behavior (Critchley & 

Garfinkel, 2018; Dunn et al., 2010; Suzuki, Garfinkel, Critchley, & Seth, 2013), we hypothesized 

that the link between conscious somatosensory perception and cardiac activity would be 

stronger for participants with higher interoceptive accuracy (measured with the Heartbeat 

Counting Task; Schandry, 1981).  

 In sum, given that baroreceptor activity, which is thought to suppress the processing of 

external input, varies both across the cardiac cycle and with the heart rate, we hypothesized that 

perceptual awareness for somatosensory stimuli increases at the later phases of the cardiac 

cycle (at diastole) and with greater cardiac deceleration. Also, we explored whether a 
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consciously detected somatosensory stimulus affects the heart rate differently compared to a 

non-detected stimulus and whether cardiac effects on conscious somatosensory perception vary 

with the capacity to consciously perceive one’s heartbeat.   
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2. METHOD 

2.1 Participants 

Thirty-three healthy volunteers (17 females, mean age = 25.9, SD = 4.1, range: 19-36 years, right-

handed) were recruited from the database of the Max Planck Institute for Human Cognitive and 

Brain Sciences in Leipzig, Germany. The procedure was approved by the ethics committee of the 

Medical Faculty at the University of Leipzig. All participants gave written informed consent 

before taking part in the study and were financially compensated for their participation.  

2.2 Apparatus 

Electrocardiography (ECG) was measured while near-threshold electrical finger nerve 

stimulation was applied. ECG was recorded at a sampling frequency of 1000 Hz with a Brain 

Products BrainAmp (Brain Products GmbH, Gilching, Germany). Electrodes were placed on the 

wrists and the left ankle (ground) according to Einthoven’s triangle. Electrical finger nerve 

stimulation was performed with a constant-current stimulator (DS5; Digitimer) applying single 

rectangular pulses with a length of 200 μs. A pair of steel wire ring electrodes was attached to 

the middle (anode) and the proximal (cathode) phalanx of the left index finger. The experiment 

was programmed and behavioral data was recorded with Matlab 8.5.1 (Psychtoolbox 3.0.11, 

Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). 

2.3 Procedure 

Each participant was tested individually in a dimly lit experimental chamber seated in a 

comfortable chair and facing a computer screen. After a brief explanation of the experimental 

procedure and the attachment of ECG electrodes, the steel wire ring electrodes were attached to 

the left index finger. The response button box was placed under the right hand. The computer 

screen indicated when to expect a stimulus and when to respond (Fig. 1). Participants 

responded with "yes" if they felt an electrical stimulus and "no" if not. The left/right button-

response mapping (yes-no or no-yes) was pseudo-randomized across participants. The 

experimental session consisted of 360 trials divided into three blocks. Each block included 100 

trials with near-threshold stimulation and 20 catch trials without stimulation in pseudo-

randomized order. The intensity of electrical stimulation was fixed throughout a block. Before 

each block, the somatosensory perceptual threshold was assessed using an automated staircase 

procedure to estimate a stimulus intensity that would be equally likely to be felt or not (the 50% 

detectability level). The applied method combines a coarser staircase procedure ("up/down 

method") and a more fine-grained Bayesian procedure ("psi method") of the Palamedes Toolbox 

(Kingdom and Prins, 2010). The automated threshold assessment resembled the actual 

experimental design, except for the shorter (500 ms) inter-trial interval and the time window in 

which stimulation could occur (1,000 ms). Thus, before each block, the experimenter made a 

data-driven decision of the individual sensory threshold (M = 2.24, SD = 0.81, range = 1-5 
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milliamperes). At the end of the experimental session and after a short break of approximately 3 

minutes, inter-individual differences in interoceptive accuracy (Garfinkel et al., 2015) were 

assessed with a Heartbeat Counting Task (Schandry, 1981), in which participants were asked to 

estimate the number of their heartbeats in five intervals of different duration (detailed in the 

Supplementary Material).  

 

 

 

Figure 1. Near-threshold somatosensory signal detection task. Trial procedure (upper row): 

each trial started with a 1,000-ms central fixation cross, followed by the 2,000-ms time window 

during which the stimulus could occur (except for the first and the last 100 ms of this interval). 

The stimulation onset was pseudo-randomized within this 1,800-ms time window, aiming for a 

uniform distribution of stimuli over the entire cardiac cycle. Next, the response phase began 

(cued by displaying "J N" – corresponding to "yes" and "no", respectively) and lasted until 

participants gave a response within the maximum time of 2,000 ms. After the button press, the 

fixation cross was visible for the rest of the 2,000-ms interval so that the total duration of each 

trial was kept constant at 5,000 ms. The next trial followed immediately so that the duration of 

each block was fixed (10 min). An experimental session (lower row) consisted of three such 

blocks, which were each preceded by a threshold assessment to estimate stimulus intensities 

with 50% detection probability.  
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2.4 Statistical analysis 

All statistical analyses were conducted using R version 3.5.1 (R Core Team, 2016) with RStudio 

version 1.1.453 (RStudio Team, 2016) and the Circular package version 0.4.93 (Agostinelli & 

Lund, 2013). Kubios 2.2 (Tarvainen et al., 2014; Biosignal Analysis and Medical Imaging Group, 

Department of Applied Physics, University of Eastern Finland, Kuopio, http://kubios.uef.fi/) was 

used to automatically detect and visually inspect R peaks in the ECG. Falsely detected or missed 

R peaks (<0.2%) were manually corrected. A two-sided alpha level of 0.05 was used in all 

statistical analyses. All preprocessed data and the codes used for the main and supplementary 

analyses are available on GitHub at https://github.com/Pawel-Motyka/CCSomato.  

2.4.1 Behavior. Prior to the analysis, the following data was excluded: 191 trials (from 26 

participants) with no response within two seconds (1.7% of all trials), 15 trials where the 

stimulation failed, 2 trials with the unassigned button pressed, and 2 trials with physiologically 

implausible IBI lengths (>1,500 ms). Also, one block of one participant was excluded due to data-

recording failure. Thus, the total number of trials retained for analysis was 11,550 (from 33 

participants): 4,530 hits (correctly detected near-threshold stimuli), 5,104 misses (not detected 

near-threshold stimuli), 81 false alarms (wrongly detected non-stimulation), and 1,835 correct 

rejections (correctly detected non-stimulation).  

2.4.2 ECG data. To investigate cardiac phase-related variations in perceptual awareness for 

somatosensory stimuli while accounting for both the oscillatory and the biphasic nature of 

cardiac activity, the distribution of hits and misses were examined (1) over the whole cardiac 

cycle by means of circular statistics (Pewsey, Neuhäuser, & Ruxton, 2013) and (2) by testing 

differences in hit rates between the two cardiac phases (systole and diastole), respectively. 

Furthermore, it was analyzed (3) whether pre- and post-stimulus changes in heart period 

differed between hits and misses.  

1) Circular statistics allows to analyze the distribution of hits and misses along the entire 

cardiac cycle (from one R peak to the next). For each participant, the mean phase angle, 

at which hits or misses occurred on average, was calculated in degrees (see section 

"Determination of stimulus onset distribution across the cardiac cycle"). At the group 

level, it was tested with Rayleigh tests (Pewsey et al., 2013) whether the distributions of 

hits and misses deviated from the uniform distribution. The Rayleigh test is based on the 

mean vector length out of a sample of circular data points and specifies the average 

concentration of these phase values around the circle – ranging from 0 to 1 indicating no 

to perfect (angular) concentration, respectively. A statistically significant Rayleigh test 

result indicates that the data are unlikely to be uniformly distributed around the circle 

(in this case: the cardiac cycle). 

https://github.com/Pawel-Motyka/CCSomato
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2) Binary analysis, based on the segmentation of the cardiac cycle into the two cardiac 

phases allowed us to compare our results to previous studies of cardiac effects on 

perception. To divide the cardiac cycle into systole and diastole, the trial-specific cardiac 

phases were computed based on cardio-mechanical events related to the ECG signal (for 

a description of the applied t-wave end detection algorithm, see section 2.6 

"Determination of individual cardiac phases"). Given the between-subject variation of 

cardiac phase lengths arising, for example, from differences in heart rate (Herzog et al., 

2002; Lewis, Rittogers, Froester, & Boudoulas, 1977; Wallace, Mitchell, Skinner, & 

Sarnoff. 1963), an individualized approach was used – instead of rather arbitrary and 

fixed systole and diastole intervals (e.g., defining systole as the 300 ms following an R 

peak). Stimulus onsets were assigned to the corresponding cardiac phase (i.e., systole or 

diastole) for each trial. Then, for each participant, hit rates were calculated separately for 

systole and diastole. A paired t test was used to determine whether hit rates differed 

between cardiac phases. 

3) To analyze the pre- and post-stimulus heart rate for hits and misses, the mean lengths of 

six consecutive interbeat intervals (IBIs) were computed (with an average IBI of 827 ms 

(SD = 119 ms), these aimed to cover the full trial length of 5,000 ms): two before the 

stimulation (S-2, S-1), one at which the stimulus occurred (Stimulus), and three after the 

stimulation (S+1, S+2, S+3). To test whether the (changes in) heart period differed 

between hits and misses, a two-way repeated-measures analysis of variance (ANOVA) 

was used – with perceptual awareness (hits/misses) and time (six IBIs, S-2 to S+3, per 

trial) as factors – followed by post-hoc Bonferroni-corrected paired t tests. Furthermore, 

an association between the extent of cardiac deceleration and the conscious access to 

somatosensory stimuli was investigated. For each trial, cardiac deceleration was 

calculated (and z-scored within participants) as the difference between the lengths of the 

IBI at which the stimulus occurred (Stimulus) and the IBI prior to it (S-1). A paired t test 

was used to examine whether the extent of cardiac deceleration differed between hits 

and misses.  

2.4.3 Interoceptive accuracy. A score of interoceptive accuracy was calculated for each 

participant. The closer the estimated number to the number of heartbeats measured by the ECG 

over five intervals, the higher the interoceptive accuracy score (cf. Supplementary Material). The 

sample was then median-split into groups of high and low interoceptive accuracy, which were 

compared using analyses described in section 2.4.2. 

2.5 Determination of stimulus onset distribution across the cardiac cycle 

In each trial, stimulus onset was pseudo-randomized within a 1,800-ms time window. 

Stimulation at different points of IBI aimed to cover the entire cardiac cycle for each subject. For 
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each stimulus, the time of the previous and the subsequent R peak were extracted from the ECG 

to calculate the stimulus onset’s relative position within the IBI using the following formula: 

[(onset time – previous R peak time) / (subsequent R peak time – previous R peak time)] × 360, 

assigning the values from 0 to 360 degrees (with 0 indicating the R peak before the stimulus). 

The distribution of stimulus onsets was tested separately for each participant with a Rayleigh 

test for uniformity. One participant was excluded from further circular analyses due to non-

uniformly distributed stimulation onsets across the cardiac cycle,𝑅= 0.11, p = 0.009. For the rest 

of the participants, the assumption of uniform onset distributions was fulfilled (all p > 0.091). 

2.6 Determination of individual cardiac phases 

To account for the biphasic nature of cardiac activity, we encoded the length of individual 

cardiac phases using the t-wave end detection method (Vázquez-Seisdedos, Neto, Marañón 

Reyes, Klautau, & Limão de Oliveira, 2011): First, the peak of the t-wave was located as a local 

maximum within a physiologically plausible interval (up to 350 ms after the R peak). 

Subsequently, a series of trapezes was calculated along the descending part of the t-wave signal, 

defining the point at which the trapezium’s area gets maximal as the t-wave end. Detection 

performance was visually controlled by overlaying the t-wave ends and the ECG trace from each 

trial. 27 trials with extreme systole lengths (more than 4 SDs above or below the participant-

specific mean) were excluded.  

 Although mechanical systole cannot be fully equated with the duration of electrical 

systole in the ECG (Fridericia, 1920), both are closely tied under normal conditions (Boudoulas, 

Geleris, Lewis, & Rittgers, 1981; Coblentz, Harvey, Ferrer, Cournand, & Richards, 1949; 

Fridericia, 1920; Gill & Hoffman, 2010). Systolic contraction of the ventricles follows from their 

depolarisation (marked in the ECG by the QRS complex), whereas the closure of the aortic valve, 

terminating the systolic blood outflow, corresponds to ventricular repolarization (around the 

end of the t-wave; Gill & Hoffmann, 2010). In our study, the ventricular systolic phase (further 

referred to as "systole") was defined as the time between the R peak of the QRS complex and the 

t-wave end, while diastole was defined as the remaining part of the RR interval.  



 

12 
 

3. RESULTS 

 

3.1 Detection rate for near-threshold somatosensory stimuli 

On average 46.7% of the near-threshold somatosensory stimuli were detected (SD = 16.2%, 

range: 15.1-79.3%). The false alarm rate was 4.2% (SD = 5.7%, range: 0-16.6%). 

3.2 Hits concentrated in the late phase of the cardiac cycle 

Rayleigh tests were applied to analyze the distribution of hits and misses across the cardiac 

cycle. Hits were not uniformly distributed across the cardiac cycle, 𝑅 = 0.32, p = 0.034 (Fig. 2A), 

with their mean angle directing to the later phase of the cardiac cycle (i.e., diastole). Misses 

showed a non-significant tendency to deviate from uniformity, 𝑅= 0.30, p = 0.060 (Fig. 2B), with 

their mean angle directing to the earlier phase of the cardiac cycle (i.e., systole). For 14 out of 32 

participants, the individual mean angles for hits fell into the last quarter of the cardiac cycle. The 

individual mean angles for misses accumulated in the second quarter of the cardiac cycle for 13 

participants. Distributions of hits or misses across the cardiac cycle did not differ significantly 

between participants with high or low interoceptive accuracy (see Fig. S1 in Supplementary 

Material). 

 

 

Figure 2. Distribution of (A) hits and (B) misses across the cardiac cycle (i.e., the interval 

between two R peaks; at 0/360°). Rayleigh tests showed a significant deviation from a uniform 

distribution for hits (𝑅= 0.32, p = 0.034) and a non-significant trend for misses (𝑅= 0.30, p = 

0.060). Each dot (and line) indicates one participant’s mean phase angle. The annular line 

depicts the distribution of individual means. The darker arrows represent the directions of the 

group means for hits (331°) and misses (129°), with their length indicating the concentration of 
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individual means across the cardiac cycle (hits: 0.32, misses: 0.30 – with 1 indicating perfect 

angular concentration).  

3.3 Higher hit rates in diastole than in systole 

Accounting for the biphasic nature of cardiac activity, differences in hit rates between systole 

and diastole were examined. Hit rates for near-threshold somatosensory stimuli were 

significantly higher during diastole (M = 47.9%, SD = 16.5%) than during systole (M = 45.1%, SD 

= 16.3%), t(32) = -2.76, p = 0.009, Cohen’s d = 0.48. Increased hit rate during diastole was 

observed for 25 out of 33 participants (Fig. 3). This mirrors the concentration of hits in the later 

phase of the cardiac cycle (see circular statistics, Fig. 2). Hit rates at different cardiac phases did 

not differ significantly between the groups with high and low interoceptive accuracy (see Fig. S2 

in Supplementary Material). Further, to allow a more direct comparison with the previous study 

by Edwards et al. (2009), hit rates were analyzed across the three 100-ms intervals of the 

cardiac cycle centered around the time points used therein: R+0 ms; R+300 ms, R+600 ms. Hit 

rates were significantly higher during the R+600 ms (at diastole) than during the R+300 ms 

interval (at systole) with no other significant differences between intervals (see Supplementary 

Material for details and Fig. S3). 

 

 

Figure 3. Significantly higher hit rates in diastole than in systole. The coordinates of each dot 

represent a participant’s mean hit rate at systole (x-axis) and diastole (y-axis). The dashed lines 

mark the identity line in hit rate between cardiac phases. The distribution in the upper right 

corner aggregates the frequency across participants. The probability distribution was shifted 

towards diastole indicating significantly higher hit rates during the later phase (i.e., diastole) 
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than the earlier phase (i.e., systole) of the cardiac cycle (t(32) = -2.76, p = 0.009, Cohen’s d = 

0.48). 

3.4 Pre- and post-stimulus heart rate (changes) for hits and misses. 

To investigate how the heart rate interacts with conscious somatosensory perception, pre- and 

post-stimulus IBIs (factor: time) were analyzed separately for hits and misses (factor: detection). 

The analysis showed significant main effects of time (Greenhouse–Geisser corrected; F(5, 160) = 

57.9, p < 0.001, ε = 0.299, η2
G = 0.008) and detection (F(1, 32) = 6.37, p = 0.020, η2

G = 0.0004) as 

well as their significant interaction (Greenhouse–Geisser corrected F(5, 160) = 13.5, p < 0.001, ε 

= 0.399, η2G = 0.0003; Fig. 4A). IBIs prior to the stimulus (S-1, S-2) did not differ significantly 

between hits and misses. IBIs concurrent with the stimulus (Stimulus) were significantly longer 

for hits than for misses (Stimulus: t(32) = 4.21, p = 0.006). This effect was also observed for IBIs 

right after the stimulus (S+1: t(32) = 5.22, p < 0.001) but not for subsequent IBIs (S+2, S+3). For 

both hits and misses, a significant cardiac deceleration was found between the IBIs before and 

during the stimulus (from S-1 to Stimulus, hits: t(32) = -7.28, p < 0.001, misses: t(32) = -4.96, p < 

0.001) as well as between the IBIs during and after the stimulus (from Stimulus to S+1, hits: 

t(32) = -5.95, p < 0.001, misses: t(32) = -5.00, p < 0.001). Cardiac deceleration was followed by 

an immediate acceleration for hits (from S+1 to S+2: t(32) = 4.93, p < 0.001), which was not 

observed for misses (from S+1 to S+2: t(32) = 1.28, pcorrected = 1.000). In the later phase of the 

trials (from S+2 to S+3), cardiac acceleration was present after both hits (t(32) = 7.50, p < 0.001) 

and misses (t(32) = 5.67, p < 0.001).  

 To further explore the association between cardiac deceleration and conscious 

somatosensory perception, the “slopes” of the stimulus-induced heartbeat deceleration 

(Stimulus - S-1) were compared between hits and misses. Consciously perceiving the stimulus 

was accompanied by larger cardiac deceleration (M = 0.07, SD = 0.08) than missing the stimulus 

(M = -0.08, SD = 0.07), t(32) = 6.97, p < 0.001, Cohen’s d = 1.21 (Fig. 4B).   
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Figure 4. Association between heart rate and perceptual performance over the course of a trial. 

(A) Mean interbeat intervals (IBIs) for hits and misses: two IBIs before (S-1, S-2) and three IBIs 

after (S+1, S+2, S+3) the stimulus onset (Stimulus). In sum, the previously found deceleration-

acceleration pattern was observed during the detection task, with more pronounced cardiac 

deceleration after hits than after misses. The vertical and horizontal bars with asterisks indicate 

significant pairwise post-hoc comparisons. (B) The extent of cardiac deceleration as a correlate 

of conscious perception, visualized using raincloud plots (Allen, Poggiali, Whitaker, Marshall, & 

Kievit, 2018). The standardized slope of cardiac deceleration (i.e., the difference between 

Stimulus and S-1) was greater for hits than for misses. The colored bands indicate 95% within-

participants confidence intervals (Morey, 2008), ** p < 0.01, *** p < 0.001.  
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4. DISCUSSION 

 

In this study, we investigated if conscious somatosensory perception varies across the cardiac 

cycle and how it interacts with the heart rate. In line with our main hypothesis of an increased 

somatosensory sensitivity during the later phase of the cardiac cycle, we found that the 

detection of near-threshold electrical finger nerve stimulation is significantly increased during 

diastole compared to systole. We also found (1) no evidence that the heart rate before a stimulus 

influenced perceptual performance, (2) that conscious detection was significantly associated 

with a stronger cardiac deceleration in the IBI during and after a stimulus, and (3) that the heart 

rate significantly accelerated with a delay after non-detected compared to detected stimuli. 

Taken together, these results indicate that conscious access to somatosensory signals varies 

across the cardiac cycle and transiently decreases the heart rate. 

 The difference between our findings and a previous study, which reported increased 

somatosensory sensitivity during “systole” (R+300 ms) compared to “diastole” (R+600 ms; 

Edwards et al., 2009), may have several – also methodological – reasons: a) Edwards et al. 

(2009) assessed perceptual thresholds at different time points within the cardiac cycle, whereas 

we used stimuli of constant intensity distributed across the entire cardiac cycle, b) the stimuli in 

the previous study consisted of 1-ms square wave pulses at 250 Hz for 60 ms, while we used 

single rectangular pulses with a length of 200 μs, c) in our analysis of detection across the 

cardiac cycle, perceptual performance was highest in the last quarter of the cardiac cycle. This 

period was not necessarily covered in the study by Edwards et al. (2009), in which the latest 

stimulation after the R peak occurred at R+600 ms. We conducted an additional analysis of our 

data to facilitate the comparison with Edwards et al. (2009), detailed in the Supplementary 

Material. It might also be worth pointing out that our findings are in line with the original 

hypothesis of Edwards et al. (2009) that perceptual sensitivity is higher (and sensory thresholds 

are lower) at diastole than at systole. 

 A possible physiological mechanism for the relatively increased detection during diastole 

is the baroreceptor-driven inhibition of sensory neural systems during systole (Duschek et al., 

2013; Critchley & Garfinkel, 2015). This is consistent with previous findings, in which 

baroreceptor activity has been related to lower intensity ratings for acoustic (Cohen et al., 1980; 

Schulz et al., 2009) and painful stimuli (Wilkinson et al., 2013) as well as longer reaction times 

(Birren et al., 1963; Edwards et al., 2007; McIntyre et al., 2008) for stimuli presented early (i.e., 

at systole) compared to late (i.e., at diastole) in the cardiac cycle. However, there is also evidence 

that specifically threatening visual stimuli are perceived more easily and rated as more intense 

during systole (Garfinkel et al., 2014). Yet, the faint electrical stimulation in our study does not 
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qualify as a threat signal but is rather an emotionally neutral stimulus, as they are typically used 

in studies of cardiac effects on conscious perception.  

 More broadly, it is not clear whether perceptual fluctuations related to rhythmic activity 

of the body and the brain (such as the heartbeat and respiration, and various forms of brain 

rhythms) come with an overall “functional advantage” or whether they are just an 

epiphenomenal consequence of physiological and anatomical constraints. For neural oscillations 

(e.g., alpha-band related variations in visual perception; Busch, Dubois, & VanRullen, 2009; 

Dugué, Marque, & VanRullen, 2011), it remains a matter of debate how perception benefits from 

inherent rhythmicity (VanRullen, 2016). It has been proposed that brain oscillations serve the 

effective communication between neurons (Fries, 2015) and enable the simultaneous encoding 

of multiple stimulus features (Lisman, 2005; VanRullen et al., 2005). However, perceptual 

rhythms in the brain have also been suggested to not have any functional role but result from 

satisfying biological constraints (VanRullen, 2016). A similar point could be made about the role 

of cardiac-related fluctuations in perception – especially because both are likely to be linked 

(Klimesch, 2018; Klimesch; 2013).  

 The present findings could also be understood as suppressing weak and non-salient 

somatosensory signals from reaching consciousness during baroreceptor firing. Given the 

enhanced processing of threat stimuli (Garfinkel et al., 2014) and pain inhibition during systole 

(Wilkinson et al. 2013), it has been proposed that baroreceptor signals promote a "fight-or-

flight" mode of behavior (Garfinkel & Critchley, 2016). In line with this interpretation, Pramme 

et al. (2016) reported enhanced visual selection during systole. Hence, baroreceptor-mediated 

inhibition of cortical activation might facilitate the allocation of attention to situationally 

relevant stimuli (Pramme, Larra, Schächinger, & Frings, 2016). It could be hypothesized that a 

stressor-evoked heart rate increase facilitates the processing of situation-relevant information 

in the external world; by shortening diastole rather than systole (Herzog et al, 2002) this results 

in proportionally longer periods, during which non-salient stimuli are inhibited. Future studies 

could explore the functional role of perceptual periodicity, for example by manipulating the 

salience of the near-threshold signals through different task requirements or an association with 

threatening stimuli (e.g., declaring or animating near-threshold somatosensory stimuli as bites 

from Malaria-infected mosquitoes). 

 Further, accounting for the bidirectional information flow between the heart and the 

brain (Faes et al., 2017, Lin et al., 2016), we investigated the influence of the (pre-stimulus) 

heart rate on perception and, in turn, the influence of perception on (post-stimulus) heart rate 

changes. Even though it was early hypothesized that cardiac deceleration enhances perceptual 

sensitivity (Graham & Clifton, 1965; Lacey et al., 1963; Lacey, 1967; Sandman, 1986; but see also 

Elliot, 1972), results are inconsistent in the auditory (Edwards & Alsip, 1969, Saxon & Dahle, 
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1971) or visual (Cobos et al., 2018; McCanne & Sandman, 1974, Park et al., 2014, Sandman et al., 

1977) and outright lacking in the somatosensory modality. Our findings match reports in the 

visual domain (Park et al. , 2014; Cobos et al., 2018) with respect to (1) the lack of evidence for 

the influence of the pre-stimulus heart rate on detection and (2) a more pronounced cardiac 

deceleration after detecting (relative to not detecting) near-threshold stimuli. In addition, we 

found that also the interbeat interval length during the somatosensory stimulation differed 

between hits and misses, and that the extent of cardiac deceleration coincident with the 

stimulation was higher for detected compared to non-detected stimuli. Moreover, for non-

detected stimuli, we observed a delayed cardiac acceleration, which might be a side effect of less 

pronounced deceleration after misses, but has been also reported to occur after an incorrect 

visual stimuli discrimination (Łukowska, Sznajder, & Wierzchoń, 2018) and, more broadly, is 

thought to reflect the processing of erroneous responses (Crone et al., 2003; Danev & de Winter, 

1971; Fiehler, Ullsperger, Grigutsch, & Cramon, 2004; Hajcak, McDonald, & Simons, 2003).  

 This lengthening of the interbeat interval reflects the rapid autonomic (i.e., 

parasympathetic) response to the consciously perceived stimulus (Barry, 2006; Knippenberg, 

Barry, Kuniecki, & van Luijtelaar, 2012). Due to its speed, it is likely to also affect the duration of 

the interbeat interval, during which the stimulus is presented (Lacey & Lacey, 1977; Jennings, 

van der Molen, Somsen, & Brock, 1991; Jennings & van der Molen, 1993; Velden, Barry, & Wölk, 

1987; Zimmermann, Velden, & Wölk, 1991; but see also Barry, 1993). It could also be that both 

cardiac deceleration and enhanced detection are the result of the central processes responsible 

for attentional preparation, which involve the activity of inhibitory brain circuits (Aron et al., 

2007). Particularly subthalamic nuclei have been proposed to regulate the extent of 

(preparatory) cardiac deceleration (Jennings, Molen, & Tanase, 2009), which – as a marker of 

increased vigilance (Barry, 1988, 1996) – has also been shown to predict accuracy in tasks 

requiring skilled motor performance (Fahimi & Vaezmousavi, 2011; Tremayne & Barry, 2001). 

Even though our design minimized the influence of preparation attempts by randomizing 

stimulus onsets, it cannot be ruled out that the concomitant increases in cardiac deceleration 

and conscious detection were both caused by coincident peaks of attentional engagement 

(Fiebelkorn & Kastner, 2018).  

 The present study has several limitations: First, as baroreceptor or brain activity were 

not directly measured, we can only speculate about the baroreceptor influences on (central) 

sensory processing. Peripheral processes like pulse-wave related sensations may equally 

contribute to changes in perceptual sensitivity. Second, the lack of significant differences in 

cardiac effects on somatosensory perception between the groups with high and low 

interoceptive accuracy might be due to the limited sample sizes or the insufficient validity of 

Heartbeat Counting Task itself (Brener & Ring, 2016). Third, to apply signal detection theory 
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measures (Green & Swets, 1966), future studies should allow to temporally locate false alarms 

within the cardiac cycle. In the current design, we used a non-cued stimulus onset within a 

1,800-ms time window. This precluded to determine the position of false alarms within the 

cardiac phases. Visual or acoustic cues for stimulus onsets would suffice for this purpose but 

may themselves introduce crossmodal interactions (Dionne, Meehan, Legon, & Staines, 2010), 

for which the influence of the cardiac cycle remains unknown. Future research could also 

consider including a graded measure of stimulus awareness (Ramsøy & Overgaard, 2004; 

Sandberg, Timmermans, Overgaard, & Cleeremans, 2010) to parametrically assess the effects of 

(un)conscious sensory processing on cardiac activity.  

 In sum, we find that conscious perception of somatosensory stimuli varies across the 

cardiac cycle and is associated with increased cardiac deceleration. This highlights the 

importance of activity in the autonomic nervous system for perceptual awareness. Our findings 

emphasize the irreducible relevance of bodily states for sensory processing and suggest a more 

holistic picture of an organism’s cognition, for which contributions from the brain and from the 

rest of the body cannot be clearly separated.  
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